111 research outputs found

    Implications of the Optical Observations of Neutron Stars

    Full text link
    We show that observations of pulsars with pulsed optical emission indicate that the peak flux scales according to the magnetic field strength at the light cylinder. The derived relationships indicate that the emission mechanism is common across all of the observed pulsars with periods ranging from 33ms to 385 ms and ages of 1000-300,000 years. It is noted that similar trends exist for γ\gamma ray pulsars. Furthermore the model proposed by Pacini (1971) and developed by Pacini and Salvati (1983,1987) still has validity and gives an adequate explanation of the optical phenomena.Comment: 23 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Search for the Optical Counterpart of the Vela Pulsar X-ray Nebula

    Full text link
    Observations of the Vela pulsar region with the Chandra X-ray observatory have revealed the fine structure of its synchrotron pulsar-wind nebula (PWN), which showed an overall similarity with the Crab PWN. However, contrary to the Crab, no firm detection of the Vela PWN in optical has been reported yet. To search for the optical counterpart of the X-ray PWN, we analyzed deep optical observations performed with different telescopes. We compared the optical images with those obtained with the Chandra ACIS to search for extended emission patterns which could be identified as counterparts of the X-ray nebula elements. Although some features are seen in the optical images, we find no correlation with the X-ray structure. Thus, we conclude that the diffuse optical emission is more likely associated with filaments in the host Vela SNR. The derived upper limits on the optical flux from the PWN are compatibile, within the uncertainties, with the values expected on the basis of the extrapolations of the X-ray data.Comment: 19 pages, 6 figures. Accepted for publication in Ap

    The distance to the Vela pulsar gauged with HST parallax oservations

    Get PDF
    The distance to the Vela pulsar (PSR B0833-45) has been traditionally assumed to be 500 pc. Although affected by a significant uncertainty, this value stuck to both the pulsar and the SNR. In an effort to obtain a model free distance measurement, we have applied high resolution astrometry to the pulsar V~23.6 optical counterpart. Using a set of five HST/WFPC2 observations, we have obtained the first optical measurement of the annual parallax of the Vela pulsar. The parallax turns out to be 3.4 +/- 0.7 mas, implying a distance of 294(-50;+76) pc, i.e. a value significantly lower than previously believed. This affects the estimate of the pulsar absolute luminosity and of its emission efficiency at various wavelengths and confirms the exceptionally high value of the N_e towards the Vela pulsar. Finally, the complete parallax data base allows for a better measurement of the Vela pulsar proper motion (mu_alpha(cos(delta))=-37.2 +/- 1.2 mas/yr; mu_delta=28.2 +/- 1.3 mas/yr after correcting for the peculiar motion of the Sun) which, at the parallax distance, implies a transverse velocity of ~65 km/s. Moreover, the proper motion position angle appears specially well aligned with the axis of symmetry of the X-ray nebula as seen by Chandra. Such an alignment allows to assess the space velocity of the Vela pulsar to be ~81 km/s.Comment: LaTeX, 21 pages, 5 figures. Accepted for publication in Ap

    Unpulsed UBV Optical Emission from the Crab Pulsar

    Full text link
    Based on observations of the Crab pulsar using the TRIFFID high speed imaging photometer in the UBV bands using the Special Astrophysical Observatory's 6m telescope in the Russian Caucasus, we report the detection of pronounced emission during the so-called `off' phase of emission. Following de-extinction, this unpulsed component of emission is shown to be consistent with a power law with an exponent of alpha = -0.60 +/- 0.37, the uncertainty being dominated by the error associated with the independent CCD photometry used to reference the TRIFFID data. This suggests a steeper power law form than that reported elsewhere in the literature for the total integrated spectrum, which is essentially flat with alpha ~ 0.1, although the difference in this case is only significant at the ~ 2 sigma level. Deeper reference integrated and TRIFFID phase-resolved photometry in these bands in conjunction with further observations in the UV and R region would constrain this fit further.Comment: 26 pages, 2 figures, uses aasms4.sty, accepted for publication in the Astrophysical Journa

    The X-ray Spectrum of the Vela Pulsar Resolved with Chandra

    Full text link
    We report the results of the spectral analysis of two observations of the Vela pulsar with the Chandra X-ray observatory. The spectrum of the pulsar does not show statistically significant spectral lines in the observed 0.25-8.0 keV band. Similar to middle-aged pulsars with detected thermal emission, the spectrum consists of two distinct components. The softer component can be modeled as a magnetic hydrogen atmosphere spectrum - for the pulsar magnetic field B=3×1012B=3\times 10^{12} G and neutron star mass M=1.4MM=1.4 M_\odot and radius R=13R^\infty =13 km, we obtain \tef^\infty =0.68\pm 0.03 MK, Lbol=(2.6±0.2)×1032L_{\rm bol}^\infty = (2.6\pm 0.2)\times 10^{32} erg s1^{-1}, d=210±20d=210\pm 20 pc (the effective temperature, bolometric luminosity, and radius are as measured by a distant observer). The effective temperature is lower than that predicted by standard neutron star cooling models. A standard blackbody fit gives T=1.49±0.04T^\infty =1.49\pm 0.04 MK, Lbol=(1.5±0.4)×1032d2502L_{\rm bol}^\infty=(1.5\pm 0.4)\times 10^{32} d_{250}^2 erg s1^{-1} (d250d_{250} is the distance in units of 250 pc); the blackbody temperature corresponds to a radius, R=(2.1±0.2)d250R^\infty =(2.1\pm 0.2) d_{250} km, much smaller than realistic neutron star radii. The harder component can be modeled as a power-law spectrum, with parameters depending on the model adopted for the soft component - γ=1.5±0.3\gamma=1.5\pm 0.3, Lx=(1.5±0.4)×1031d2502L_x=(1.5\pm 0.4)\times 10^{31} d_{250}^2 erg s1^{-1} and γ=2.7±0.4\gamma=2.7\pm 0.4, Lx=(4.2±0.6)×1031d2502L_x=(4.2\pm 0.6)\times 10^{31} d_{250}^2 erg s1^{-1} for the hydrogen atmosphere and blackbody soft component, respectively (γ\gamma is the photon index, LxL_x is the luminosity in the 0.2--8 keV band). The extrapolation of the power-law component of the former fit towards lower energies matches the optical flux at γ1.35\gamma\simeq 1.35--1.45.Comment: Submitted to ApJ, three figures; color figure 1 can be found at http://www.xray.mpe.mpg.de/~zavlin/pub_list.htm

    Optical Spectrum of Main-, Inter- and Off-pulse Emission from Crab Pulsar

    Get PDF
    A dedicated stroboscopic device was used to obtain optical spectra of the Crab main-pulse and inter-pulse as well as the spectrum of the underlying nebula when the pulsar is turned off. As the nebular emission is very inhomogeneous, our ability to effectively subtract the nebular background signal is crucial. No spectral lines intrinsic to the pulsar are detected. The main-pulse and the inter-pulse behave as power laws, both with the same de-reddened index Alpha = +0.2 +- 0.1. This value was obtained by subtracting the nebular spectrum at the exact position of the pulsar. The underlying nebula is redder, Alpha = -0.4 +- 0.1. Its emission lines are split into approaching (sim. -1200 km/s) and receding (sim. +600 km/s) components. The strength of emission line components and the flux in nebular continuum vary on arcsec scale. The nebular line and continuum intensities along the N-S slit are given.Comment: Accepted for publication in the Astrophysical Journal. 10 pages, 3 Tables, 4 Figure

    Observations of the Crab Nebula and its pulsar in the far-ultraviolet and in the optical

    Full text link
    We present HST/STIS far-UV observations of the Crab nebula and its pulsar. Broad, blueshifted absorption arising in the nebula is seen in C IV 1550, reaching about 2500 km/s. This can be interpreted as evidence for a fast outer shell, and we adopt a spherically symmetric model to constrain the properties of this. We find that the density appears to decrease outward in the shell. A lower limit to the mass is 0.3 solar masses with an accompanying kinetic energy of 1.5EE{49} ergs. A massive 10^{51} erg shell cannot be excluded, but is less likely if the density profile is much steeper than R^{-4} and the velocity is <6000 km/s. The observations cover the region 1140-1720 A. With the time-tag mode of the spectrograph we obtain the pulse profile. It is similar to that in the near-UV, although the primary peak is marginally narrower. Together with the near-UV data, and new optical data from NOT, our spectrum of the pulsar covers the entire region from 1140-9250 A. Dereddening the spectrum gives a flat spectrum for E(B-V)=0.52, R=3.1. This dereddened spectrum of the Crab pulsar can be fitted by a power law with spectral index alpha_{\nu} = 0.11 +/- 0.04. The main uncertainty is the amount and characteristics of the interstel- lar reddening, and we have investigated the dependence of \alpha_{\nu} on E(B-V) and R. In the extended emission covered by our 25" x 0.5" slit in the far-UV, we detect C IV 1550 and He II 1640 emission lines from the Crab nebula. Several interstellar absorption lines are detected toward the pulsar. The Ly alpha absorption indicates a column density of 3.0+/-0.5\EE{21} cm^{-2} of neutral hydrogen, which agrees well with our estimate of E(B-V)=0.52 mag. Other lines show no evidence of severe depletion of metals in atomic gas.Comment: 18 pages emulateapj style, including 10 figures. ApJ, accepte

    An X-Ray Pulsar in the Oxygen-Rich Supernova Remnant G292.0+1.8

    Full text link
    We report the discovery of pulsed X-ray emission from the compact object CXOU J112439.1-591620 within the supernova remnant (SNR) G292.0+1.8 using the High Resolution Camera on the Chandra X-ray Observatory. The X-ray period (P=0.13530915 s) is consistent with extrapolation of the radio pulse period of PSR J1124-5916 for a spindown rate of dP/dt=7.6E-13 s/s. The X-ray pulse is single peaked and broad with a FWHM width of 0.23P (83 degrees). The pulse-averaged X-ray spectral properties of the pulsar are well described by a featureless power law model with an absorbing column density, N_H= 3.1E21 atoms/cm^2; photon index, gamma = 1.6; and unabsorbed 0.3-10 keV band luminosity, L_X = 7.2E32 erg/s. We plausibly identify the location of the pulsar's termination shock. Pressure balance between the pulsar wind and the larger synchrotron nebula, as well as lifetime issues for the X-ray-emitting electrons, argues for a particle- dominated PWN that is far from the minimum energy condition. Upper limits on the surface temperature of the neutron star are at, or slightly below, values expected from ``standard'' cooling curves. There is no optical counterpart to the new pulsar; its optical luminosity is at least a factor of 5 below that of the Crab pulsar.Comment: 5 pages, including 3 postscript figs, LaTeX, submitted to ApJ Letter

    L-dopa and dopamine-(R)-alpha-lipoic acid conjugates as multifunctional codrugs with antioxidant properties

    Get PDF
    A series of multifunctional codrugs (1-4), obtained by joining L-Dopa (LD) and dopamine (DA) with (R)-R-lipoic acid (LA), was synthesized and evaluated as potential codrugs with antioxidant and iron-chelating properties. These multifunctional molecules were synthesized to overcome the pro-oxidant effect associated with LD therapy. The physicochemical properties, together with the chemical and enzymatic stabilities of synthesized compounds, were evaluated in order to determine both their stability in aqueous medium and their sensitivity in undergoing enzymatic cleavage by rat and human plasma to regenerate the original drugs. The new compounds were tested for their radical scavenging activities, using a test involving the Fe (II)- H2O2-induced degradation of deoxyribose, and to evaluate peripheral markers of oxidative stress such as plasmatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the plasma. Furthermore, we showed the central effects of compounds 1 and 2 on spontaneous locomotor activity of rats in comparison with LD-treated animals. From the results obtained, compounds 1-4 appeared stable at a pH of 1.3 and in 7.4 buffered solution; in 80% human plasma they were turned into DA and LD. Codrugs 1-4 possess good lipophilicity (log P > 2 for all tested compounds). Compounds 1 and 2 seem to protect partially against the oxidative stress deriving from auto-oxidation and MAO-mediated metabolism of DA. This evidence, together with the “in vivo” dopaminergic activity and a sustained release of the parent drug in human plasma, allowed us to point out the potential advantages of using 1 and 2 rather than LD in treating pathologies such as Parkinson’s disease, characterized by an evident decrease of DA concentration in the brain
    corecore